1. What is 7.2589 rounded to the nearest hundredth?
 (A) 7.26 (B) 7.3 (C) 7.2 (D) 7.25

2. $\frac{52}{78} =$
 (A) $\frac{3}{4}$ (B) $\frac{8}{9}$ (C) $\frac{2}{3}$ (D) $\frac{5}{6}$

3. $1.37 + 9.2 + 5.001 =$
 (A) 5.23 (B) 6.13 (C) 52.3 (D) 15.571

4. 2.53×3.1 is between
 (A) 4 and 6 (B) 6 and 8 (C) 60 and 80 (D) 600 and 800

5. $\frac{3}{4}$ of 48 is
 (A) 16 (B) 36 (C) 38 (D) 64

6. $35.2 - 3.31 =$
 (A) 31.89 (B) 32.01 (C) 31.98 (D) 32.13

7. Beth makes fruit punch by adding 3 cups of fruit juice to every 5 liters of soda. If she uses 15 liters of soda, how many cups of juice should she use?
 (A) 9 (B) 12 (C) 13 (D) 25

8. $\frac{5.7}{0.028}$ is closest to
 (A) 2 (B) 20 (C) 200 (D) 2000

9. $\frac{3}{8} + \frac{1}{4} =$
 (A) $\frac{1}{2}$ (B) $\frac{5}{8}$ (C) $\frac{4}{8}$ (D) $\frac{1}{2}$

10. If the average of 5 numbers is 50, what is their sum?
 (A) 10 (B) 25 (C) 55 (D) 250

11. $\frac{5}{11} \div \frac{3}{7} =$
 (A) $\frac{1}{11}$ (B) $\frac{35}{33}$ (C) $\frac{1}{2}$ (D) $\frac{33}{35}$

12. $1\frac{2}{3} \times 2\frac{3}{8} =$
 (A) $2\frac{23}{24}$ (B) $4\frac{1}{24}$ (C) $2\frac{1}{4}$ (D) $\frac{40}{57}$
13. \(\frac{7}{20} = \)
(A) 0.305
(B) 0.35
(C) 2.86
(D) 13

14. \(\frac{3}{4} - \frac{1}{6} = \)
(A) 1
(B) \(\frac{2}{24} \)
(C) \(\frac{2}{3} \)
(D) \(\frac{7}{12} \)

15. If 10 percent of a number is 40, then 25 percent of that number is
(A) 4
(B) 10
(C) 16
(D) 100

16. A clock that gains 20 seconds every hour will gain how many minutes in a day?
(A) 4
(B) 8
(C) 16
(D) 32

17. \(3 \div \frac{5}{6} = \)
(A) \(\frac{18}{5} \)
(B) \(\frac{5}{2} \)
(C) \(\frac{7}{3} \)
(D) \(\frac{5}{18} \)

18. According to the graph above, if the township collected a total of $3,600,000 in taxes, what amount was set aside for the emergency fund?
(A) $900,000
(B) $144,000
(C) $90,000
(D) $14,400

19. 58,602 \(\div 5 = \)
(A) 1172\(\frac{2}{5} \)
(B) 1172\(\frac{3}{5} \)
(C) 11720\(\frac{2}{5} \)
(D) 11720\(\frac{4}{5} \)

20. If eight furlongs measures 320 rods, how many furlongs are in a measure of 600 rods?
(A) 16
(B) 20
(C) 15
(D) 40

A theater was sold out for 85 percent of its performances last season. Once the theater was sold out for 15 performances in a row.
21. From the information above, which of the following can be determined?
 (A) The total number of performances last season that were sold out.
 (B) The number of performances last season that were not sold out.
 (C) The percent of the performances last season that were not sold out.
 (D) The percent of the performances sold out in a row.

22. Three people who work full time are to work together on a project, but their total time in the project is to be equivalent to that of only one person working full time. If one of the people is budgeted for \(\frac{1}{3} \) of his time to the project and a second person \(\frac{1}{4} \) of her time, what part of the third worker’s time should be budgeted to this project?
 (A) \(\frac{1}{12} \) \quad (B) \(\frac{5}{12} \) \quad (C) \(\frac{4}{7} \) \quad (D) \(\frac{3}{4} \)

23. 12.5 percent of 402 is closest to
 (A) 35 \quad (B) 40 \quad (C) 50 \quad (D) 480

24. 5.905 \times 100.04 is closest to
 (A) 500 \quad (B) 600 \quad (C) 5,000 \quad (D) 6,000

25. In year X the population of a certain city was reported to be 503,200, which represented 82 percent of the state’s population. According to these figures, what was the approximate population of the state in year X?
 (A) 410,000 \quad (B) 510,000 \quad (C) 610,000 \quad (D) 790,000

26. Which of the following is greater than 0.30 and less than 0.50?
 (A) \(\frac{1}{5} \) \quad (B) \(\frac{2}{5} \) \quad (C) \(\frac{3}{5} \) \quad (D) \(\frac{4}{5} \)

27. How many fifths are there in 2.8?
 (A) 140 \quad (B) 14 \quad (C) 5.6 \quad (D) 0.56

28. If \(\frac{N}{10} \) equals 0.41, then N is approximately
 (A) 41 \quad (B) 4 \quad (C) 5 \quad (D) 0.6

29. If 1 pik = 10 jams and 1 dim = 25 jams, what is the ratio of the value of 5 piks to 4 dims?
 (A) 1 : 2 \quad (B) 2 : 5 \quad (C) 5 : 2 \quad (D) 5 : 4

30. On two tests, a student scored 85 and 92, respectively. What score must the student achieve on a third test in order to have an average score of 90 for the 3 tests?
 (A) 89 \quad (B) 90 \quad (C) 93 \quad (D) 95
31. Which of the following is closest to $\sqrt{4000}$?
(A) 20 (B) 60 (C) 400 (D) 2000

32. A rectangular recreation area 20 meters long and 15 meters wide is to be marked off by putting a rope around it. The length of the shortest rope that can be used is about how many meters?
(A) 35 (B) 70 (C) 105 (D) 300

33. \[\frac{7.14 \times 0.009}{0.11} \] is closest to which of the following?
(A) 0.0714 (B) 0.714 (C) 7.14 (D) 71.4

34. Which of the following shows a way to change $\frac{2}{5}$ to an equivalent fraction?
(A) $\frac{2}{5} + \frac{5}{2}$ (B) $\frac{2}{5} \times \frac{5}{2}$ (C) $\frac{2}{5} + \frac{2}{2}$ (D) $\frac{2}{5} \times \frac{2}{2}$

35. $8 \frac{1}{16} - 1 \frac{7}{8}$ is closest to
(A) 6 (B) 6\(\frac{1}{2} \) (C) 7 (D) 7\(\frac{1}{2} \)
Directions: In this section solve each problem. Then decide which is the best of the choices given.

1. Which of the following is greater than \(-6\)?
 (A) \(-7\) (B) \(-6.3\) (C) \(-2\) (D) \(-9\)

2. \(5(x + 3) = \)
 (A) \(5x + 3\) (B) \(5x + 15\) (C) \(5x + 8\) (D) \(x + 15\)

3. \(\frac{21 - (-7)}{7} = \)
 (A) 2 (B) 4 (C) 10 (D) 22

4. \(12x - 16y - 5x + y = \)
 (A) \(7x^2 - 15y^2\) (B) \(17x - 17y\) (C) \(7x - 15y\) (D) \(7 - 15y\)

5. \(8\left(-\frac{1}{8}\right) = \)
 (A) \(-1\) (B) 0 (C) \(\frac{7}{8}\) (D) \(7\frac{7}{8}\)

6. If \(c = -3\), then \(4c^2 + 5c - 2 = \)
 (A) \(-53\) (B) 7 (C) 19 (D) 127

7. Which of the following numbers is least?
 (A) \(-\frac{1}{4}\) (B) 1 (C) 0 (D) \(-4\)

8. \(\sqrt{36x^6} = \)
 (A) \(18x^4\) (B) \(18x^3\) (C) \(6x^4\) (D) \(6x^3\)

9. If \(2x - 5 = -7\), then \(x = \)
 (A) 1 (B) \(-1\) (C) 6 (D) \(-6\)

10. \((2x - 3)(2x + 3) = \)
 (A) \(2x^2 - 9\) (B) \(4x^2 - 9\) (C) \(4x^2 + 9\) (D) \(4x^2 - 6x - 9\)

11. \(\frac{15x^2}{3x} = \)
 (A) 5x (B) \(5x^2\) (C) 12x (D) \(\frac{5}{x}\)
12. \((2x^2y)^3\)
 (A) \(6x^6y^3\) \hspace{1cm} (B) \(8x^5y^3\) \hspace{1cm} (C) \(8x^6y^3\) \hspace{1cm} (D) \(9x^6y^3\)

13. On Monday, Dave drove exactly \(m\) miles. On Tuesday, he drove 112 fewer miles than he drove on Monday. Which of the following expressions represents the total number of miles Dave drove on both days?
 (A) \(m - 112\) \hspace{1cm} (B) \(112 - m\) \hspace{1cm} (C) \(112 - 2m\) \hspace{1cm} (D) \(2m - 112\)

14. \(3x - (5x - 4) =\)
 (A) \(8x - 4\) \hspace{1cm} (B) \(-2x - 4\) \hspace{1cm} (C) \(-2x + 4\) \hspace{1cm} (D) \(3x - 1\)

15. If \(4x = 12 - 7x\), then \(x =\)
 (A) \(-3\) \hspace{1cm} (B) \(\frac{12}{11}\) \hspace{1cm} (C) \(\frac{11}{12}\) \hspace{1cm} (D) \(-\frac{12}{11}\)

16. Of the following, which is a factor of \(4x^3 - 2x^2 + 4x\)?
 (A) \(2x\) \hspace{1cm} (B) \(4x\) \hspace{1cm} (C) \(8x\) \hspace{1cm} (D) \(2x^2\)

17. \(4x^2 - 9y^2 =\)
 (A) \((4x + 3y)(4x - 3y)\) \hspace{1cm} (B) \((2x + 3y)(2x - 3y)\) \hspace{1cm} (C) \((4x - 9y)(x + y)\) \hspace{1cm} (D) \((2x - 3y)^2\)

18. Which if the following is an equation of the graph above?
 (A) \(y = x\) \hspace{1cm} (B) \(y = 3\) \hspace{1cm} (C) \(x = -3\) \hspace{1cm} (D) \(x = 3\)

19. If \(\frac{5}{2}x^2 + 2 = 10\), then \(x =\)
 (A) \(\frac{16}{5}\) \hspace{1cm} (B) \(8\) \hspace{1cm} (C) \(\frac{24}{5}\) \hspace{1cm} (D) \(20\)

20. \(\frac{\frac{4}{x} - \frac{4}{y}}{x + y} =\)
 (A) \(\frac{4y - 4x}{xy}\) \hspace{1cm} (B) \(\frac{4y - 4x}{xy}\) \hspace{1cm} (C) \(\frac{4}{xy}\) \hspace{1cm} (D) \(0\)

21. \((a - 2b)^2 =\)
 (A) \(a^2 - 4ab + 4b^2\) \hspace{1cm} (B) \(a^2 - 2ab + 4b^2\) \hspace{1cm} (C) \(a^2 + 4b^2\) \hspace{1cm} (D) \(a^2 - 4b^2\)
22. All the following points are on the graph of \(y = 3x + 1 \), EXCEPT
(A) \((-2, -5)\) \hspace{1cm} (B) \((1, 4)\) \hspace{1cm} (C) \((0, 1)\) \hspace{1cm} (D) \((2, 6)\)

23. \(\left(\frac{2s}{5r} \right) \left(\frac{10r}{6s^2} \right) = \)
(A) \(6rs\) \hspace{1cm} (B) \(\frac{2r}{3s}\) \hspace{1cm} (C) \(\frac{2}{3s}\) \hspace{1cm} (D) \(\frac{12s^3}{50r^2}\)

24. For the system of equations above, what is the value of \(x \)?
(A) 4 \hspace{1cm} (B) 6 \hspace{1cm} (C) 7 \hspace{1cm} (D) 9

25. Given \(x = -|5| + |6|, y = | - 5 + 6|, \) and \(z = | - 5 + |6|, \) which one of the following is true about the numbers \(x, y, \) and \(z \)?
(A) \(x = y \) \hspace{1cm} (B) \(y = z \) \hspace{1cm} (C) \(x = y = z \) \hspace{1cm} (D) \(x < y \)

26. Which of the following is a factor of \(x^2 - 5x - 6 \)?
(A) \(x - 2 \) \hspace{1cm} (B) \(x - 3 \) \hspace{1cm} (C) \(x - 6 \) \hspace{1cm} (D) \(x - 1 \)

27. The equation \(\frac{N}{2} - 1 = 5 \) could be used to represent which of the following sentences?
(A) 1 less than half a number \(N \) equals 5.
(B) Half a number \(N \) less than 1 equals 5.
(C) A number \(N \) minus 1 divided by 2 equals 5.
(D) Two times a number \(N \) minus 1 equals 5.

28. If 8 is \(\frac{3}{4} \) of a number \(N \), then \(N = \)
(A) 6 \hspace{1cm} (B) 32 \hspace{1cm} (C) \(\frac{32}{3} \) \hspace{1cm} (D) 24

29. If \(2x - y = 12 \), and \(x = 2y \), then \(x = \)
(A) 4 \hspace{1cm} (B) 8 \hspace{1cm} (C) 16 \hspace{1cm} (D) 0

30. Kim earns \(x \) dollars per hour for the first 40 hours she works in a week and \(1 \frac{1}{2} \) times as much for each hour over 40. If she worked 52 hours last week, how much, in dollars, did she earn?
(A) \(52x \) \hspace{1cm} (B) \(40 + \frac{1}{2}x \) \hspace{1cm} (C) \(52x + \frac{1}{2}x \) \hspace{1cm} (D) 58x
31. Which of the following is a factor of \(3a^2 - 17a + 20\)?

(A) \(3a - 20\)
(B) \(a - 4\)
(C) \(a + 4\)
(D) \(3a + 5\)

32. \(\frac{10}{3 + \frac{2}{x}} = \)

(A) \(2x\)
(B) \(\frac{10}{3x + 2}\)
(C) \(\frac{10x}{3x + 2}\)
(D) \(\frac{10}{3} + \frac{2}{x}\)

33. In a certain school there were 5 more seniors than juniors. In one marking period, 12 percent of the juniors and 10 percent of the seniors were on the honor roll. If the total of juniors and seniors on the honor roll was 17, how many seniors were there in the school in that marking period?

(A) 80
(B) 75
(C) 155
(D) 8

34. \(\frac{8}{x + 3} - \frac{5}{x + 1} = \)

(A) \(\frac{3}{4}\)
(B) \(\frac{3}{(x + 3)(x + 1)}\)
(C) \(\frac{3x + 23}{(x + 3)(x + 1)}\)
(D) \(\frac{3x - 7}{(x + 3)(x + 1)}\)

35. If \(\sqrt{x} - a = b\), then \(x = \)

(A) \((a + b)^2\)
(B) \(a + b\)
(C) \(\sqrt{b} + \sqrt{a}\)
(D) \(\sqrt{b} + a\)
COLLEGE LEVEL MATHEMATICS

Suggested time – 50 minutes
35 Questions

Directions: In this section solve each problem. Then decide which is the best of the choices given.

1. \(2x^2 - 10x + 12 = \)
 (A) \((2x - 3)(x - 4)\) (B) \([2(x - 3)]^2\) (C) \(2(x - 2)(x - 3)\) (D) \(2(x + 6)(x - 1)\) (E) \(2(x - 5)(x - 1)\)

2. Where defined, \(\frac{18x^3y^5z}{-6x^2y^4z} = \)
 (A) \(-3xy^4\) (B) \(-3xy^2\) (C) \(\frac{xy^4}{3}\) (D) \(\frac{1}{3xy^2}\) (E) \(\frac{y^4}{3x}\)

3. Which of the following shaded regions is the graph of the region described by \(-1 \leq x \leq 2\) and \(0 \leq y \leq 3\)?

 (A) ![Graph A](image1)
 (B) ![Graph B](image2)
 (C) ![Graph C](image3)
 (D) ![Graph D](image4)
 (E) ![Graph E](image5)
4. The figure above is a portion of the graph of which of the following equations?
(A) \(y = \sin 2x \)
(B) \(y = 2 \cos x \)
(C) \(y = \sin x \)
(D) \(y = \csc x \)
(E) \(y = \tan x \)

5. Which of the following can be factored in the form \((x + h)^2\), where \(h\) is an integer?
(A) \(x^2 + 3 \)
(B) \(x^2 + 9 \)
(C) \(x^2 + 6x + 12 \)
(D) \(x^2 + 6x + 36 \)
(E) \(x^2 + 6x + 9 \)

6. Where defined, \(\left(\frac{x^2 + x - 6}{x + 3} \right) \left(\frac{x + 2}{x^2 - 4} \right) = \)
(A) 0
(B) 1
(C) \(\frac{x-2}{x} \)
(D) \(\frac{x+1}{x+2} \)
(E) \(\frac{x+3}{x+2} \)

7. Where defined, \(\frac{1}{\tan \theta} = \)
(A) \(\frac{\cos \theta}{\sin \theta} \)
(B) \(\frac{\sin \theta}{\cos \theta} \)
(C) \(\sec \theta \)
(D) \(\cos \theta \)
(E) \(\csc \theta \)

8. If \(4(x - 2) + 5 = 6 - (x + 5) \), then \(x = \)
(A) \(\frac{9}{4} \)
(B) \(\frac{14}{9} \)
(C) \(-\frac{14}{9} \)
(D) \(\frac{4}{5} \)
(E) \(-\frac{4}{9} \)

9. For what values of \(x \) is \(|2x + 5| = 15 \)?
(A) \(-5\) only
(B) 8 only
(C) \(-5 \) and 5
(D) \(-10 \) and 5
(E) \(-5 \) and 10

10. What is the sum of the roots of the equation \((x + 1)(x - 2)(x - 3) = 0\)?
(A) 6
(B) \(-4 \)
(C) 5
(D) 4
(E) \(-6 \)

11. If \(x < 0 \), then \(2 |x| + x = \)
(A) \(-3x \)
(B) \(3x \)
(C) \(x \)
(D) \(-x \)
(E) \(3 |x| \)
12. If $\sin 50^\circ = x$, then which one of the following is true?

(A) $0 < x < \frac{1}{2}$
(B) $\frac{1}{2} < x < \frac{\sqrt{3}}{2}$
(C) $\frac{\sqrt{2}}{2} < x < \frac{\sqrt{3}}{2}$
(D) $\frac{\sqrt{3}}{2} < x < 1$
(E) $1 < x < \frac{3}{2}$

13. If the equation of the linear function in the figure is $y = mx + b$, then $m =$

(A) r
(B) $-\frac{r}{s}$
(C) $\frac{r}{s}$
(D) $-\frac{s}{r}$
(E) $\frac{s}{r}$

14. If $a_2 = 2a_1 + 3$ and $a_3 = 4a_2 + 3^2$, then in terms of a_1, $a_1 + a_2 + a_3 =$

(A) $7a_1 + 27$
(B) $3a_1 + 27$
(C) $10a_1 + 63$
(D) $11a_1 + 63$
(E) $11a_1 + 24$

15. For what real numbers x is $x^2 - 14x + 49$ negative?

(A) $-7 < x < 7$
(B) $x < -7$ or $x > 7$
(C) $x = -7$ or $x = 7$
(D) $0 < x < 14$
(E) For no x

16. An equation of the line in the figure above is

(A) $y = -\frac{3}{2}x + 3$
(B) $y = \frac{3}{2}x$
(C) $y = -\frac{3}{2}x + 2$
(D) $y = \frac{2}{3}x + 2$
(E) $y = \frac{3}{2}x + 3$

17. If $\log_5 x = 3$, then $x =$
18. What is the amplitude of \(y = -5 \sin 4x \)
(A) 4 (B) \(\frac{5}{4} \) (C) \(\frac{5}{4} \) (D) \(-5 \) (E) 5

19. If \(f(x) = 4x + 3 \) and \(g(x) = \frac{x - 3}{4} \), then \(f(g(x)) =
(A) x (B) \frac{x - 3}{8x + 4} (C) \frac{8x + 2}{x - 3} (D) \frac{17x + 9}{4} (E) \frac{(4x + 3)(x - 3)}{4}

20. In the figure above, if the coordinates of point \(P \) on the unit circle are \((x, y)\), then \(\sin \theta =
(A) \frac{x}{y} (B) \frac{1}{y} (C) x (D) y (E) \frac{1}{x}

21. In the square in the figure above, the area of the unshaded region is
(A) \((4x - y)(4x - y)\) (B) \(16x^2 + y^2\) (C) \(4x(4x - y) - y(4x + y)\) (D) \(4x(4x + y) + y(4x + y)\) (E) \((4x + y)(4x - y)\)
\[
\begin{align*}
\begin{cases}
 y = -x + 2 \\
 y = x^2
\end{cases}
\end{align*}
\]

22. What values of \(x\) satisfy the system of equations above?
(A) 1 and \(-2\)
(B) 2 and \(-2\)
(C) 2 and \(-1\)
(D) 4 and 1
(E) 4 and 2

23. Which one of the following could represent the graph of \(y = -x^2 + c\)?
(A)
(B)
(C)
(D)
(E)

24. \(\csc \frac{\pi}{3} = \)
(A) 2
(B) \(\frac{\sqrt{3}}{2}\)
(C) \(\frac{2}{\sqrt{2}}\)
(D) \(\frac{2}{\sqrt{3}}\)
(E) \(\frac{\sqrt{3}}{2}\)

25. If \(f(x) = 3x^2 - 4\), then \(f(-x) = \)
(A) \(f(x - 1)\)
(B) \(-f(x)\)
(C) 0
(D) \(f(x)\)
(E) \(f(x + 1)\)

26. \(\sum_{n=4}^{11} n = \)
(A) 7
(B) 10
(C) 60
(D) 66
(E) \(\frac{111}{4}\)

27. \(8(2^\frac{3}{2})(4^{\frac{1}{5}}) = \)
(A) \(2^{\frac{3}{5}}\)
(B) \(2^6\)
(C) \(2^{\frac{27}{5}}\)
(D) \(2^7\)
(E) \(2^9\)
28. Which of the following could be an equation of the graph shown in the figure above?
(A) \(y = (x - 1)^2 + 5 \)
(B) \(y = (x - 1)^2 - 5 \)
(C) \(y = (x + 1)^2 - 5 \)
(D) \(y = |x - 1| - 5 \)
(E) \(y = |x + 1| - 5 \)

29. \(\log_5 \sqrt[3]{5} = \)
(A) \(-\frac{1}{3} \)
(B) \(-\frac{1}{2} \)
(C) \(\frac{3}{2} \)
(D) \(\frac{1}{\sqrt{5}} \)
(E) \(\sqrt{5} \)

30. If the domain \(D \) of the function \(f \) is the set of all real numbers \(x \) for which \(f(x) = \sqrt{4 - x^2} \) is a real number, then \(D = \)
(A) \(\{x \mid x \leq -2 \text{ or } x \geq 2\} \)
(B) \(\{x \mid x < -2 \text{ or } x > 2\} \)
(C) \(\{x \mid -2 \leq x \leq 2\} \)
(D) \(\{x \mid x \neq 2\} \)
(E) \(\{x \mid -2 < x < 2\} \)

31. \(\frac{3 - 2i}{3 + 2i} = \)
(A) \(1 - \frac{12}{7}i \)
(B) \(\frac{5}{7} - \frac{12}{7}i \)
(C) \(\frac{7}{13} - \frac{12}{13}i \)
(D) \(\frac{5}{13} - \frac{12}{13}i \)
(E) \(1 - i \)

32. If \(f(x) = \frac{1}{x}, x \neq 0 \), then \(\frac{f(x+h) - f(x)}{h} \) is
(A) \(\frac{h}{x(x+h)} \)
(B) \(\frac{-h}{x(x+h)} \)
(C) \(1 \)
(D) \(\frac{1}{x(x+h)} \)
(E) \(-\frac{1}{x(x+h)} \)

33. What is the solution set \(\cos x = \sqrt{3} \sin x \), where \(0 \leq x \leq 2\pi? \)
(A) \(\{\frac{\pi}{6}\} \)
(B) \(\{\frac{\pi}{3}\} \)
(C) \(\{\frac{\pi}{3}, \frac{4\pi}{3}\} \)
(D) \(\{\frac{\pi}{6}, \frac{7\pi}{6}\} \)
(E) \(\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\} \)

34. If \(f(x) = 2 - 6x \), and \(f^{-1} \) denotes the inverse of \(f \), then \(f^{-1}(2) = \)
(A) \(-14\)
(B) \(-10\)
(C) \(0\)
(D) \(14\)
(E) undefined

35. If 3 is a double root of the equation \(ax^3 + bx^2 + cx + d = 0 \), which of the following could NOT be a factor of the left member of the equation?
(A) \(x^2 - 4x + 4 \)
(B) \(x^2 - 5x + 6 \)
(C) \(x^2 - 6x + 9 \)
(D) \(x^2 + x - 12 \)
(E) \(x^2 - 9 \)